Microservices Integrated Performance and Reliability Testing

Matteo Camilli
matteo.camilli@unibz.it
Free University of Bozen-Bolzano
Bolzano, Italy

Barbara Russo
barbara.russo@unibz.it
Free University of Bozen-Bolzano
Bolzano, Italy

ABSTRACT

Continuous quality assurance for extra-functional properties of
modern software systems is today a big challenge as their complex-
ity is constantly increasing to satisfy market demands. This is the
case of microservice systems. They provide high control on the
scale of operation by means of fine-grained service decomposition,
but this demands careful consideration of the relations between
performance of individual microservices and service failures.

In this work, we propose MIPaRT, a novel methodology, and
platform to automatically test microservice operations for perfor-
mance and reliability in combination. The proposed platform can
be integrated into a DevOps cycle to support continuous testing
and monitoring by the automatic (1) generation and execution of
performance-reliability ex-vivo testing sessions, (2) collection of
monitoring data, (3) computation of performance and reliability
metrics, and (4) integrated visualization of the results.

We apply our approach by operating the platform on an open
source benchmark. Results show that our integrated approach can
provide additional insights into the performance and reliability
behaviour of microservices as well as their mutual relationships.

CCS CONCEPTS

« Software and its engineering — Software performance; Software
reliability; Software verification and validation.

KEYWORDS

Microservices systems, reliability testing, performance testing

ACM Reference Format:

Matteo Camilli, Antonio Guerriero, Andrea Janes, Barbara Russo, and Ste-
fano Russo. 2022. Microservices Integrated Performance and Reliability
Testing. In IEEE/ACM 3rd International Conference on Automation of Soft-
ware Test (AST °22), May 17-18, 2022, Pittsburgh, PA, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3524481.3527233

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

AST °22, May 17-18, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9286-0/22/05....$15.00
https://doi.org/10.1145/3524481.3527233

Antonio Guerriero
antonio.guerriero@unina.it
Universita di Napoli Federico II
Napoli, Italy

Andrea Janes
andrea.janes@unibz.it
Free University of Bozen-Bolzano
Bolzano, Italy

Stefano Russo
stefano.russo@unina.it
Universita di Napoli Federico II
Napoli, Italy

1 INTRODUCTION

The microservices architectural style is widely used by leading com-
panies like Netflix, Amazon, Google, Microsoft to develop large-
scale service-based systems composed of loosely coupled services,
running in their process, and communicating via lightweight mech-
anisms, such as RESTful APIs [1]. Microservices systems are usually
engineered using DevOps, a set of practices for which operations
become part of the development and infrastructure moves into the
code (Infrastructure-as-a-code) [2]. To this aim, operations special-
ists become part of the development teams and system adminis-
trators and corporate IT groups are able to write the code that
maintains the infrastructure. DevOps aims at reducing the time
between committing a change to and the change being deployed
to production, while ensuring high quality [3, 4]. In this work,
we focus on two fundamental qualities for microservices systems:
performance and reliability, and on their inter-relationship.
Continuous testing and monitoring represent two key DevOps
practices. Testing provides engineers with a quality feedback at deci-
sion gates, to establish if a release candidate is ready for production.
To assess whether it meets a desired quality, tests are performed
in production, or in a staging environment with realistic users’
behaviour and workload intensity [5, 6]. Monitoring is essential in
DevOps to collect usage data (how the users interact with the sys-
tem) and raw measurements data (how the system performs). Such
data is typically used by Quality Assurance (QA) teams to drive the
testing sessions and ultimately support release decisions [7].
Figure 1 illustrates the main high-level activities to carry out
integrated performance and reliability testing of microservices in
DevOps cycles. Such an iterative process provides the opportunity
to learn from the history of recent executions, due to the availabil-
ity of online monitoring tools, such as OPENAPM!. Historical data
can be used to improve the knowledge on the expected workload
intensity and the behaviour of the various actors (which we refer
to as behaviour mix). Here, evolutionary changes (e.g., a new re-
lease due to new pieces of functionality) can cause changes in the
behaviour of the actors or addition of new actors. Furthermore,
operational changes (e.g., new actors and different behaviour mix)
can unveil issues and therefore trigger a new Dev cycle. In this per-
petual loop, tracking changes allows proper testing activities to be
carried out. Indeed, the behaviour of actors in operation can be very
different from the one conceived by the testers before the release.
For instance, some of the actors can change the way they usually

!https://openapm.io/

https://orcid.org/0000-0003-2491-5267
https://orcid.org/0000-0002-8104-3832
https://orcid.org/0000-0002-1423-6773
https://orcid.org/0000-0003-3737-9264
https://orcid.org/0000-0002-8747-3446
https://doi.org/10.1145/3524481.3527233
https://doi.org/10.1145/3524481.3527233
https://openapm.io/

AST 22, May 17-18, 2022, Pittsburgh, PA, USA

QA
performance/reliability
KPIs
Decision gate

performance &

reliability testing

b

workload behavior
intensity mix

plan new release

a
@

loy onto production
environment

Ops
monitor
microservices

track
execution traces

update microservices/
configuration

deploy onto staging
environment

update
usage profile

Figure 1: Continuous performance & reliability testing inte-
grated into DevOps cycles.

interact with the microservices due to unforeseen events, like the
circumstances induced by the pandemic. Thus, a central concern in
performance and reliability testing is the rigorous characterization
of the actors and how their behaviour may lead to technical failures.
While performance testing [8, 9] and reliability testing [10, 11]
of microservices systems have been studied as separate problems,
there exists a striking lack of integrated testing approaches able to
assess the two quality attributes and derive mutual relationships.

This paper presents MIPaRT (Microservices Integrated Perfor-
mance and Reliability Testing), a novel methodology and support
platform to automatically execute ex-vivo testing? sessions for
continuous integrated performance and reliability analysis of mi-
croservice systems. MIPaRT leverages usage and system data from
past Ops phases to automate the generation and execution of perfor-
mance and reliability tests at a decision gate. It then computes and
visualizes Key Performance Indicators (KPIs) to pinpoint problems
(e.g. bottlenecks, faulty microservices).

This work aims at answering the following research questions
in the context of microservices systems engineering:

RQ1: Does the integrated performance-reliability testing pro-
vide advantages compared to the verification of the two
qualities in isolation?

RQ2: Can MIPaRT detect existing relations between performance
and reliability issues?

To answer these questions, MIPaRT is evaluated through controlled
experiments with the Train Ticket microservices system bench-
mark [13], reproducing two scenarios of evolutionary and opera-
tional changes typically occurring in DevOps. The evaluation shows
MIPaRT features to support finding performance and reliability
issues and their relationships.

The remainder of the paper is as follows. In Sec. 2 we discuss
related work. In Sec. 3 we introduce the Train Ticket benchmark
used as system under test (SUT) in the evaluation. In Sec. 4 we
describe MIPaRT. In Sec. 5 we present the evaluation and we answer
to the research questions. In Sec. 6 we discuss threats to validity.
Finally, in Sec. 7 we report concluding remarks.

2 According to [12], ex-vivo testing “indicates any type of software testing performed
in-house using information extracted from the field”.

Camilli, et al.

2 RELATED WORK

Related work is examined in the following mainly with reference to
performance and reliability quality factors of microservice systems.

Scalability and performance are among the quality attributes of
microservices that pose most of the testing challenges [14]. The IT
industry considers performance testing as the main pain, demand-
ing for further research efforts [15, 16]. Generating appropriate
tests to reveal issues for these qualities is challenging, as the in-
put space is usually large and the operating conditions are usually
uncertain [17, 18]. Therefore, trying all possible input value com-
binations under all possible conditions is impractical and in many
cases even infeasible. For instance, only a few input values can de-
tect issues in performance [19], and finding those values is mostly
a manual, intellectually intensive and laborious activity [20].

Research and practice generally focus on the separate assess-
ment of each quality attribute. Recent literature proposes ML-
techniques [21, 22] and symbolic execution methods [23, 24] to
detect appropriate input values that can discover performance or
reliability issues separately. Their application can be expensive in a
DevOps environment, and sometimes they are not more accurate
than simple random input generation [25]. Using them for reliabil-
ity and performance in combination may be even more expensive.
In addition, methods based on symbolic execution do not scale to
systems with a large set of input data, since the number of paths
to search grows exponentially with respect to the input size [26].
Most of these methods are suited for white-box settings, where
engineers have access to the source code [24].

We propose here a black-box approach that does not require code
availability and is able to automatically detect performance and re-
liability issues at the level of individual microservice request types.
It exploits API specifications to determine valid and invalid request
input, building a Markov model, randomly sampling the partitioned
input space, and finally computing and visualizing performance
and reliability in combination. The approach generates and exe-
cutes tests ex-vivo in a non-intrusive way, without instrumenting
a specific framework to isolate and test individual microservices,
as instead proposed in [27]. The approach can be integrated into
the staging environment of a DevOps pipeline, allowing for fast
feedback on the discovered issues.

Performance testing. Approaches for performance testing typ-
ically follow one of the two strategies: testing to fulfill single
user experience (e.g., [28]) or to satisfy a scalability requirement
(e.g., [8, 29]).

Single-user performance tests evaluate the performance of an
application under the load of one user. The purpose of such tests
is to understand the control flow of user requests and identify
segments that consume the major part of the response time. Such
an approach is typically adopted in usability engineering [28].

Scalability testing verifies the target system’s ability to meet the
performance requirements under demanding load situations [30].
Recent approaches and tools measure performance degradation of
microservices against a benchmark configuration of the SUT that
fulfills the given scalability requirement [8, 31, 32]. The approach
has been further adopted to automate the detection of performance

Microservices Integrated Performance and Reliability Testing

AST 22, May 17-18, 2022, Pittsburgh, PA, USA

Table 1: Examples of requests for the Train Ticket benchmark.

Request Core microservice Relative path from /api/v1 Method

Arguments (with type and constraints)

createUser adminUserService /adminuserservice/users POST

documentNum: numeric (alphanumeric, required), documentType: numeric (positive integer, re-
quired), email: string (alphanumeric), gender: numeric, password: string (alphanumeric and spe-
cial characters, required), userName: string (alphabetic characters), authorization: string (alphanu-
meric, required)

login authService Jusers/login POST

username: string (alphanumeric, required), username: string (alphanumeric and special characters,
required)

searchTicket travelService /travelservice/trips/left POST

startingPlace: string (alphabetic characters), endPlace: string (alphabetic characters), departure-
Time: string (date-time format)

booking preserveService /preserveservice/preserve POST

accountld: string (alphanumeric, required), contactsld: string (alphanumeric, required), tripld:
string (alphanumeric, required), seatType: string (integer > 0), date: string (date-time format),
from: string (alphabetic), to: string (alphabetic), assurance: string (integer > 0), foodType:
numeric (integer > 0), foodName: string (alphabetic), foodPrice: numeric (float > 0), station-
Name: string (alphabetic), storeName: string (alphabetic), authorization: string (alphanumeric,
required)

getAssuranceTypes assuranceService /assuranceservice/assurances/types GET

authorization: string (alphanumeric, required)

pay insidePayService /inside_pay_service/inside_payment POST

orderld: string (alphanumeric, required), tripld: string (alphanumeric, required), authorization:
string (alphanumeric, required)

violations and suggest optimal configurations of microservice de-
composition with respect to monolith architectures [33]. The ap-
proach has also been used to associate performance degradation
with the prediction of security attacks [9].

Finally, chaos engineering is an emerging approach in industry
to evaluate large-scale systems through in-vivo experiments [34].
These carry out performance and scalability tests to identify avail-
ability issues that might occur in production (e.g., in Netflix [34, 35]).

Reliability testing. Automated reliability testing of microservices
is of paramount importance in DevOps, [11]. Several techniques
and tools have been proposed to this aim. DevOpRET is a technique
to estimate reliability at the acceptance testing stage in DevOps
cycles. Heorhiadi et al. propose Gremlin [36], a framework for re-
silience testing to assess the ability of a microservice system to
recover from failures. Jindal ef al. introduce Terminus [37] to es-
timate the capacity of a microservice, defined as the maximum
number of successfully processed user requests per second, on
different deployment configurations via load tests, and fitting a
regression model to the acquired performance data. The goal is to
define the appropriate resources for each microservice, so that the
whole system achieves the best perforan minimizing their over-
all consumption. Pietrantuono et al. developed MART [10] and its
enhancement EMART [38] as testing techniques for reliability as-
sessment of microservice-based system, starting from the definition
of an operational profile, namely of the expected usage in operation.

3 BENCHMARK MICROSERVICES SYSTEM

We describe and evaluate MIPaRT with reference to a benchmark
microservice system used in software engineering research, called
Train Ticket®. This containerized train ticket booking application
runs onto 41 microservices implemented by using a modern tech-
nology stack, as described in [39]. The benchmark has been se-
lected according to a number of criteria, including: (i) usage of
well-established microservice architectural patterns; (ii) possibility
of using automated deployment practices in software containers;
(iii) support for different deployment configuration options.

3Train Ticket is an open source project. Sources and documentation are available at
https://github.com/FudanSELab/train- ticket.

Table 1 lists a number of services available to Train Ticket users.
Users are provided a web interface that basically allows tickets to
be searched, reserved, bought, and refunded. The business logic of
each service involves several microservices; among them, a core
RESTful microservice is identified, listed in the second column in
Table 1; the remaining columns list the core microservice relative
path, the arguments of a user request, and constraints on their val-
ues, as per the documentation. For instance, a guest user can search
(travelservice) a train from a source city to a destination at de-
sired date and time. A registered user can login and then book a
ticket (preserveService), specifying the passenger, the seat class,
and the assurance type (assuranceService). Upon successful book-
ing, the user is required to pay (insidePayService). A user can
also change a ticket (subject to time limitations) or ask for refund.
An administrator user can register new users (adminUserService)
and add, delete, or change the information of trains.

4 MIPART

We introduce an overview of MIPaRTin Sec. 4.1. We define the
notion of operating conditions in Sec. 4.2. Then, we describe our
ex-vivo testig approach in Sec. 4.3, and the integrated performance-
reliability analysis in Sec. 4.4. We finally discuss our current imple-
mentation of the platform in Sec. 4.5.

4.1 Overview

As anticipated in Sec. 1, changes to a deployed system (namely, to its
microservices) typically occur frequently, in short DevOps cycles.
Failures, as well as performance degradation, may occur due to
changes in the users behaviour (e.g., most invoked services) and in
the workload (e.g., number of concurrent users). Both new releases
(evolutionary) and usage profile (operational) changes are tracked
and monitored in a DevOps process. This offers the opportunity to
QA engineers to update the knowledge on the operating conditions,
carry out proper testing activities, take decision at quality gates,
and provide feedback to the other teams.

MIPaRT performs automated performance and reliability test-
ing sessions as part of the QA stage of a DevOps cycle, triggered
by evolutionary or operational changes (e.g., a new release of a
microservice, or a change in the workload).

https://github.com/FudanSELab/train-ticket

AST 22, May 17-18, 2022, Pittsburgh, PA, USA

ghill

workload
intensity

(©
&

usage data
! from Ops

oL

behavior models

of actors behavior mix

workload specification

(i) definition of the operational setting

DUHU—’AE‘_’E@D‘*HH

: deployment
! workload .

! load testin '
: intensity session 9 configuration :
H :% E
| @ |—> |
: ¢ Q@p :
: ® :
] . . . raw |
H behavior models behavior mix measurements |

>ﬁ >;:ii

raw KPls and

measurements 'P' visualization
“-i
performance-reliability
metrics

(iii) integrated analysis IZ(> decision gate

Figure 2: The three stages of MIPaRT.

The methodology follows three stages shown in Fig. 2:

i) definition of the operating conditions (based on the usage
data collected from Ops), composed of workload intensity
and behaviour of the actors (Sec. 4.2);

ii) execution of ex-vivo testing sessions, loading the SUT with
the specified workloads (Sec. 4.3);

iii) integrated analysis, fed by raw measurements, to compute
and visualize performance and reliability estimates (Sec. 4.4).

4.2 Definition of the operating conditions

The first stage consists in defining the operating conditions to be
reproduced for testing the system. Such a definition extends the
one introduced in [9] and it includes the following elements:

o the workload specification that describes allowed requests
that a user can invoke on the SUT together with details on the
way to generate the requests to each operation (i.e., relative
paths, parameters, and constraints, as shown in Table 1);

o a set of behavioural models, each providing a stochastic rep-
resentation of user sessions in terms of (valid and invalid)
requests generated according to the workload specification;

e a workload intensity value: the expected number of concur-
rent users, likely to access the system in operation.

Camilli, et al.

0.9

I'_|ome > login .
/index lusers/login

login 0.02
lusers/login '

search ticket
ltravelservice/trips/left

H&
0.95

booklng booking
/preservesemce/preserve Ipreserveservice/preserve

” / H
95
finside_pay_: serwce/mslde)ayment /|ns|de _pay_¢ serwce/lnslde paym@
1.0 0.05

Figure 3: DTMC behavioural model for the buyer actor.

0.9

o a behaviour mix, namely a distribution of frequencies of be-
havioural models, representing their occurrence probability
within the defined workload intensity.

A user interacts with the system according to a given behavioural
model. The model is generated by combining the information ex-
tracted from the documentation (i.e., the workload specification)
and the frequency of requests issued by different actors extracted
from the usage data. For example, a possible actor for Train Ticket
is the guest who searches for tickets without logging in, while the
buyer is a logged-in actor who searches and then reserves a ticket.
The buyer may perform the following sequence of requests: visit
the home, login, search ticket, book a ticket, and then pay.

In MIPaRT, we propose a behavioural model that provides a
probabilistic representation of user sessions in terms of a Discrete
Time Markov Chain (DTMC) [40, 41]. Here, we extend the modeling
approach introduced in [42] by additionally considering the input
space in the construction of the Markov chain. Thus, the DTMC is
the main building block of our integrated approach. It is the model
that drives the testing activity and then the integrated reliability
and performance assessment. Essentially, the nodes of the DTMC
model represent the requests that can be issued to the system by
providing either a valid or invalid input values, according to the API
specification. Thus, the input space for each request is partitioned
into valid and invalid classes, henceforth referred to as request
classes. The transitions (i.e., weighted edges) in the DTMC specify
the probability of moving from a given request class to the next one.
Figure 3 shows an example of DTMC for the buyer actor. Green
nodes model valid requests, whereas red nodes model invalid ones.
For instance, from the valid request login, a buyer can move to
the valid request searchticket with probability 0.9 and to the
invalid request searchticket with probability 0.1. Based on the
API relative path associated with each DTMC node, we can also
determine the core microservice in charge of handling the requests
(second column in Table 1). For instance, in Fig. 3, the request
search_ticket maps to travelService. The DTMCs are used to
drive the generation of instances of synthetic users (i.e., actors) for
the testing sessions. The behaviour mix defines the percentage of

Microservices Integrated Performance and Reliability Testing

concurrent users to be sampled for each actor. For instance, for a
workload intensity of N concurrent users, the following behaviour
mix:

(guest: 0.5; buyer: 0.3; refund_claimer: 0.2) (1)

is used to emulate a scenario where 50% of the N users are guests,
30% of them carry out a reservation, and 20% request refunding.

The operating conditions (behavioural models, behaviour mix,
and workload intensity) are extracted automatically from the us-
age data collected during the Ops stages of a DevOps cycle and
raw sessions are automatically recorded in session logs and then
analyzed to extract the workload intensity and DTMCs using clus-
tering algorithms [11, 42]. In this case, a cluster represents an actor
and is a set of sessions represented by similar DTMCs. Thus, to
automatically generate the operating conditions, we first need the
following data in a session log: “session identifier”, “request start
time”, “request end time”, “request relative path”and combinations
of “valid" and “invalid values" for the arguments of each request.
Once the DTMCs are generated, the frequency associated with
DTMC is computed as frequencies of sessions in clusters over all
sessions. Thus, the frequencies defines the empirical categorical
distribution for workload intensity.

4.3 Ex-vivo testing

In this stage, joint performance/reliability tests are performed ex-
vivo in the operational environment. The SUT is deployed at the
beginning of each test session (and un-deployed at the end), then
loaded with synthetically generated users that replicate the oper-
ating conditions of interest. The sessions are generated and then
orchestrated according to the following factors defined by the tester:

e the DTMC behavioural models of the users;

e the behaviour mix categorical distribution;

e aset A of workload intensity values;

e a set of deployment configurations C (e.g., memory, CPU,
and replicas per each microservice).

For each pair (A,¢) € A X C, the SUT is deployed by using the
configuration c. Thus, the testing session starts and generates the
workload intensity A. Each actor instance is drawn with a probabil-
ity of the actor’s behaviour mix. Given an actor instance, the testing
process automatically samples requests as well as inputs according
to the corresponding DTMC. Namely, each input is generated by
drawing from one of the two classes according to the current node
and outgoing transition probability. For instance, according to Fig. 3,
a buyer instance from the state login, can either perform a search
with a valid input (with probability 0.9) or an invalid one (probabil-
ity 0.1). An invalid search request can be issued, for example, by
inserting special symbols in the argument startingPlace, or by
using a wrong date-time format for the departureTime argument.
Between each request the process applies a pseudo-random think
time using an exponential distribution (with average inter-arrival
time between 1 and 5 seconds) to represent realistic user behaviour.

During all the testing sessions, we collect raw measurement data,
that are then used in the integrated performance and reliability
analysis and visualization as described in the following.

AST 22, May 17-18, 2022, Pittsburgh, PA, USA

4.4 Performance-reliability analysis

4.4.1 Metrics. The analysis starts by estimating performance and
reliability during the observation period T (i.e., duration of a test
session) for each request class p (e.g., loginyalid)-

For each class p, we define the Performance estimator, P(p), as
the normalized distance from the average response time p(p) to a
performance threshold L(p):

. L(p)-p(p)
P(p) = {0 L(p)

The lower the value, the worse is performance. It is worth noting
that the parametric threshold L(p) in Eq. 2 can be set for any class
p. There are essentially two ways known in literature to set this
threshold: according to a user-based experience [28] or a scalability
requirement [8]. The former approach follows usability engineering
practices for web-based applications. In this case, L(p) can be set
to 1 sec if we want to represent the limit for the user’s flow of
thought to stay uninterrupted, or 10 sec for keeping the user’s
attention focused. According to the latter approach and existing
literature [9, 32], L(p) can be empirically derived as a scalability
threshold: L(p) = po(p) + 3 - oo(p), with po(p) and oo (p) average
and standard deviation of the response time for the request class p,
measured during a testing session carried out under ideal operating
conditions, like a small number of users and full availability of
system resources. We further define Performance Degradation (PD)

u(p) < L(p)

otherwise

@)

as 1-P(p), so that the higher its value, the worse is the performance.

We then define the Reliability estimator, R(p), as the ratio of non-
failing requests in T, according to the Nelson-Aalen non-parametric
estimator [38, 43]:
— M (3)

N(p)
with N(p) total number of issued requests in p, and F(p) number
of failed requests in p, so that the lower the value, the worse is
reliability. Then we define the ratio of Failed Requests (FR) as 1-R(p),
so that higher values correspond to worse reliability. In our work,
detect a failure or success of a request on the HTTP status code.
Specifically, every status code other than 2xx (success) is considered
as a failed request. In our experiments, we empirically observed
recurring issues that we grouped into the two default categories
reported above: server errors (500 and 502 response codes) and
connection errors (codes 503 and 504).

To investigate issues associated with performance and reliability
at finer level, MIPaRT provides engineers with additional metrics
for each request class p:

R(p)=1

® Request Ratio (RR): ratio of requests in class p over of all the
requests of the test session.

e Connection Errors ratio (CE): requests that return a connec-
tion error out of all the failed requests in p over of all the
requests of the test session.

o Server Errors ratio (SE): requests that return a server error
out of all the failed requests in p over of all the requests of
the test session.

4.4.2 Visualization. To detect performance and reliability issues
of a request class p, MIPaRT compares the values of the perfor-
mance and reliability estimators, P(p) and R(p), in the so-called

AST 22, May 17-18, 2022, Pittsburgh, PA, USA

1.00

Low
criticality

o
~
o

[
o
c
g Medium
£ 050 iticali
g criticality
o
o
0.25 High
criticality
0.00
0.00 0.25 0.50 0.75 1.00
reliability

Figure 4: Criticality plot for performance-reliability analy-
sis of request classes.

criticality plot shown in Fig. 4. Each class p yields a point in the
coordinate space (p, li), which, for demonstration purpose, we have
divided in three areas corresponding to high, medium, and low
criticality levels, according the the Euclidean distance from the
most critical point (P = 0, R = 0). In Figure 4, all requests in the
class payyaliq have no issue (i.e., ﬁ(p) = Ié(p) = 1), while invalid
requests (payinvalid) yield reliability issues (i.e., ﬁ(p) =0).

MIPaRT visualizes the five metrics RR, CR, SE, FR, and PD in a
radar plot for each request class p as illustrated in Fig. 5. Based on
the area identified by the radar coordinates, engineers can quantify
and compare performance and reliability of each request class de-
tected as high critical in criticality plot. Using Table 1, engineers
can further trace these results back to the core microservices and
prioritise their maintenance activities to these microservices. Fig-
ure 5a shows the radar plot for the payys1iq class. In this case,
the request ratio (RR) is low and all the other indicators are zero,
meaning proper service operation under a relatively small work-
load intensity. Figure 5b shows another example for the pay;nya1id
class. Even though the request ratio is very small (RR close to zero,
though not null) the class exhibits severe issues according to the
percentage of failed requests out of the total number of requests
issued to p (FR axis). More than 60% of the failed requests are server
errors (SE axis), while almost 40% of the failed requests are con-
nection errors (CE axis). Performance related indices show instead
good results. Indeed, the performance degradation (PD axis) is close
to 0. These results suggest engineers investigating the presence of
software defects causing fast failures in the management of invalid
requests to the pay service.

4.5 Integrated platform

MIPaRT is fully automated and requires the following inputs: the
RESTful API specification, the target operating conditions, and the
performance threshold for each class of requests.

The software platform supporting the MIPaRT methodology is
implemented using PYTHON3 and our in-house developed tool PP-
TAM [31, 44]*. The platform integrates and orchestrates multiple
modules that collectively realize the main stages of the approach.
The operational conditions sampled from Ops, are defined in a

4Open source software publicly available at https://github.com/pptam/pptam-tool.

Camilli, et al.

RR RR

SE SE

() payvalid class (b) payinvalid class

Figure 5: Sample radar plots for requests to the pay service.

declarative manner through the BENcHFLOW domain-specific lan-
guage [45]. By using the language, the tester essentially declares: the
DTMC behavioural models of the actors, the behaviour mix, the set
of workload intensities, and one or more deployment configurations.
We make use of DockkRr (https://www.docker.com) to deploy/un-
deploy the microservices of the Train Ticket benchmark onto an
in-house testing environment composed of two virtualized comput-
ing units: the driver unit (running the testing sessions), and the SUT
unit (running the SUT). Once the SUT is deployed onto its unit, the
orchestrator spawns one or more testing sessions according to the
BeENcHFLOw declaration. The framework LocusT (http://locust.io)
is used to generate the workload intensity according to the be-
havioural models and the behaviour mix. The classes can be au-
tomatically generated by using EVOMASTER (www.evomaster.org)
provided that the RESTful API includes a schema in OpenAPI/Swag-
ger format (https://swagger.io/specification/). Raw measurements
are collected during each test session to compute the performance
and reliability estimators as well as the additional indices per each
individual class. At the end of the sessions, the tester visualizes the
criticality plot and the radars in a interactive notebook implemented
using ApAcHE ZEPPELIN (https://zeppelin.apache.org/).

5 EVALUATION

In this section we discuss our experience in using MIPaRT on
different versions of the Train Ticket benchmark. We first introduce
two realistic DevOps scenarios in Sec. 5.1. We describe the design
of our controlled experiments in Sec. 5.2. We present major results
in Sec. 5.3 and we discuss them in Sec. 5.4.

5.1 Scenarios

The following two scenarios exemplify how MIPaRT help engineers
detect performance and reliability issues of a microservice system.

SCENARIO 1 (EVOLUTIONARY CHANGE). This scenario emulates
the modification or addition of microservices of the target system,
due to changes in requirements or user preferences. Evolutionary
changes or, more in general, maintenance to individual microser-
vices may alter reliability/performance of the exposed functions.
This is, for instance, the case of login or the search of new tickets,
two important functions for Train Ticket. For this reason, a new
QA phase is required since it may trigger additional development

https://github.com/pptam/pptam-tool
https://www.docker.com
http://locust.io
www.evomaster.org
https://swagger.io/specification/
https://zeppelin.apache.org/

Microservices Integrated Performance and Reliability Testing

and new release cycles. We reproduced this scenario, starting from
version v1 of Train Ticket, and then introducing a version v2, to be
assessed in a QA phase after a new Dev phase. The two versions of
Train Ticket adopt alternative implementations of the microservices
travelService, adminUserService, and authService.

SCENARIO 2 (OPERATIONAL CHANGE). This scenario emulates an
unexpected increase of the amount of concurrent users (workload
intensity), or unforeseen changes of their behaviour possibly caused
by the release of a new piece of functionality or even by external
factors. For example, in a pandemic situation an unexpected number
of users may cancel issued tickets and ask for refund. This situation
yields different interaction patterns and the microservices involved
in issuing vouchers may exhibit performance and reliability issues.
We reproduced this scenario by injecting changes in the way the
system is used during an Ops phase. Specifically, we assume that
due to the pandemic, users are “less prone” to buy tickets than usual,
and increasingly prone to ask for refund. This causes changes in
the DTMCs as well as their behaviour mix.

5.2 Experiments

We designed a set of controlled experiments, operating MIPaRT
with the benchmark system under defined operating conditions
and collected raw measurements to carry out the integrated analy-
sis. The machines used as ex-vivo testing infrastructure have the
following characteristics:

e MIPaRT node: 4 GB RAM, 1 CPU at 2.6 GHz;

e SUT node: 16 GB RAM, 8 CPUs at 2.6 GHz;

o both nodes: magnetic disks with 15,000 rpm, 10 Gbit/s net-

work connections.

We deployed two versions of Train Ticket and varied the operat-
ing conditions, reproducing the two DevOps scenarios described in
Sec. 5.1. Overall, we identified four actors for the two scenarios:

o guest: search for travel options without logging in;

e buyer: search for travel options, log in and buy tickets;

e renouncing: log in and cancel a reservation;

o refund_claimer: log in and claim refunding of the cost of a

previously issued ticket.

The behaviour of each of these actors is described by a DTMC
model that drives the generation of the requests in each class. In
all testing sessions, we set performance threshold L(p) = 10 sec for
all classes p (i.e., limit for keeping the user’s attention focused in
web applications) according to user-based experience practice [28]
as described in Sec. 4.4.

5.3 Results

In this section, we illustrates the results for the two considered
scenarios (evolutionary and operational change).

5.3.1 Scenario 1 (evolutionary change). In this scenario, we have
three actors, (guest, buyer, and renouncing) operating the two Train
Ticket versions v1 and v2 with the following behaviour mix:

(guest : 0.5; buyer : 0.4; renouncing : 0.1) (4)
under three workload intensities: low (150 users); medium (200

users), and high (250 users). We execute a testing session for each
triplet (version, behaviour mix, workload intensity), for a total of 6

AST 22, May 17-18, 2022, Pittsburgh, PA, USA

sessions. Each testing session lasts 20 minutes in which we sample
more than 15k requests according to the three DTMCs and their
mix. The criticality plots in Fig. 6 show the results for each test of
the two versions v1, v2 (labels of input classes in the low criticality
region are not shown for the sake of readability). The plots for ver-
sion v1 indicate an increase of the number of problematic request
classes with the increase of the workload intensity. For some of the
classes, such a criticality affects both performance and reliability
(e.g., cancelNoRefundjnyalid). In version v2, we can observe a gen-
eral decrease in the number of problematic classes. Nevertheless,
the high workload yields a larger number of high-critical classes
than in v1. These classes exhibit a substantial performance degra-
dation and an unreliable behaviour with high workload as shown
in Fig. 6f. The comparison also shows that requests searchTicket
in version v2 are problematic with high workload both for valid
and invalid inputs. The problem refers to a drop in performance in
version v2, although none of the two implementations appears to
solve the reliability issues of the service (see Fig. 6¢ and Fig. 6f). Ac-
cording to Table 1, the core microservice in charge of handling such
request classes is travelService. With this information, engineers
might prioritize its maintenance in a future Dev phase.

By expanding the analysis to all five metrics of MIPaRT, we
can have a better understanding of the type of failures the services
experiences for Scenario 1. Table 2 shows a summary of the relevant
issues per request class and test session according to the following
eight cases:

o Performance and Reliability issues (Perf&Rel): when FR > 0.05,
PD > 0.1, CE > 0, and SE > 0;

o Performance issues (Perf): when PD > 0.5;

o Reliability issues (Rel): when FR > 0.5 and SE > 0;

e Connection and Server errors (Conn&Serv): when SE > 0 and
CE > 0;

e Connection errors (Conn): when only CE > 0;

o Server errors (Serv): when only SE > 0;

e No criticality (ok): if there is at least one request for the
considered input class, and none of previous cases applies;

o No requests (noReq): zero requests issued to that class.

The cases have been conceived to indicate which of the issues
may originate from both performance and reliability problems. For
instance, the case Perf&Rel detects those classes for which relia-
bility and performance are not satisfactory (although they may
be not highly problematic as for the cases Perf or Rel), but whose
requests come back with both connection (e.g., load or transmis-
sion problems) and server errors (e.g., code problems). This case
is subtle and may not be easily caught by a tester as FR and PD
of these requests may not be as high as for the cases Perf or Rel.
For instance, although cancelNoRefund,a1iq is always in the ori-
gin of the criticality plot, it is related only to Performance issues.
This depends on a high response time (always over the thresh-
old), related to CEs occurring for each request. Moreover, we ob-
serve that the changes introduced in v2 improve reliability for
the class createUsery,1iq4 (mapping to adminUserService) and
loginya1ig (mapping to authService). The valid requests issued
to searchTicket (a core microservice for Train Ticket) deserve

5The thresholds have been chosen only to exemplify our approach on Train Ticket
and are not intended to be generally valid for other systems.

AST 22, May 17-18, 2022, Pittsburgh, PA, USA

Camilli, et al.

1.00 1.00 1.00 .
. : : :
Low % tow ¢ Low
criticality : criticality o criticality ®
0.75 0.75 0.75
L]
© © [.
o o o
= = =4
g Medium g Medium g Medium o
£ 0.50 —1— £ 0.50 —1— £ 050 1
S criticality S criticality] criticality
@ @ @
=% a a
.
0.25 High 0.25 High 0.25 High
criticality criticality criticality
cancelNoRefund _invalid cancelNoRefund_invalid
0.00 cancelNoRefund_valid 0.00 cancelNoRefund_valid 0.00 cancelNoRefund_valid
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
reliability reliability reliability
(a) version v1, workload low (b) version v1, workload medium (c) version v1, workload high
1.00 . i 1.00 1.00 I
Low Low ! Low
criticality o critiqﬁlity. criticality
0.75 0.75 ° 0.75
Y L]
© ©)
(5] o o
g g 3
Medium Medium Medium
£ 0s0 criticali £ 050 criticali £ 0s0 iticg|ity
2 Y 2 24 £ cancelNoRefund valid] .
] ° o @ .
Q =% =% §
getFoods_valid
0.25 High . 0.25 High 0.25
criticality criticality
searchTicket valid
cancelNoRefund_valid cancelNoRefund_valid searchTicket_invalid
0.00 0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
reliability reliability reliability

(d) version v2, workload low

(e) version v2, workload medium

(f) version v2, workload high

Figure 6: Scenario 1 — Criticality plot before (v1) and after a change (v2) for increasing workload intensities.

Table 2: Scenario 1 - Summary of the detected issues per classes of user input.

version v1
workload medium

user requests

(input class) workload low workload high

version v2

workload low workload medium workload high

loginyalid Conn&Serv Conn Conn&Serv ok Conn ok

© 0 loginimvalid Comn Conn ~ Comm | & ok Comn ok
searchTicketyalid Perf&Rel Perf&Rel Perf&Rel Perf Perf Perf

" searchTicketinyaiig I Rl 1 Rl Rl | Serv. Perf&Rel ~ Perf&Rel
payvalid ok ok ok ok ok Perf

T payinvalid I Rl 1 Rl Rd | Rl R noReq
bookingya1id Conn&Serv Conn&Serv Conn&Serv Conn&Serv Serv Serv

" bookingimalid ok Serv. Conn&Serv | Serv. Serv. ok
cancelNoRefundyalig Perf Perf Perf Perf Perf Perf

" “cancelNoRefundipyaliq =~ noReq Perf] Perf | noReq noReq noReq
createUseryalid Perf Perf Perf&Rel Perf Perf ok

navigatetoClientloginya;g ok ok Comm | < ok ok ok

© adminloginaig I Rel ~ Perf&Rel Rl | Comm Comn ok

" ‘getAssuranceTypesyaiq¢ Conn Coon Comn | ¢ ok Comn ok

" getFoodsyalida Conn&Serv ~ Comn Comm | Comn Coon Pef

S homeyalig Coom Comm Comm | < ok ok ok

" selectContactyaig Conn Conmn Comm | Conn Conmn ok

" selectOrderyaiig Conmn Conn Comm | < ok Comn ok

version v2 the criticality level increases even more with the work-
load intensity. Under workloads low and medium, the reliability is
close to 1.0, whereas the PD increases from 0.60 to 0.78. Under high

specific attention: even though both performance and reliability of
searchTicket, ;4 degrade as the workload increases, for version
v1 yields a medium criticality level for all workload intensities. For

Microservices Integrated Performance and Reliability Testing

RR

SE

(a) version v1, workload low

RR

RR

SE

(b) version v1, workload medium

RR

AST 22, May 17-18, 2022, Pittsburgh, PA, USA

RR

SE

(c) version v1, workload high

RR

SE

(d) version v2, workload low

SE

(e) version v2, workload medium

SE

(f) version v2, workload high

Figure 7: Scenario 1 — Radar plots for the request class searchTicket, ;s per version and workload intensity.

workload, we observe a drop in reliability, bringing the class to the
highest criticality level. In Scenario 1, Table 2 helps identify those
request classes that deserve more attention and be further analysed
through the MIPaRT radar plots. For example, the analysis in Table 2
reports Perf&Rel issues for the request class searchTicket, ;g
for all loads in version v1, whereas Perf problems for all load of
version v2. The radar plots for such class are illustrated in Figure 7.
The radars of the class in version v1 show that under low and
medium workload intensity, the requests show a low failure rate
(FR) all due to server errors, whereas some connection errors occur
at high workload intensity. The areas in the radars also quantifies
the evolution of such change. With version v2, performance de-
grades from 0.60 to 1 with the increase of the workload and the
few errors are only associated to the connection. This degradation
causes the accumulation of pending requests into request queue of
the microservice travelService. This in turn causes saturation of
the resources that makes the travelService temporarily unable
to handle the requests, triggering a visible manifestation in terms
of reliability drop.

5.3.2 Scenario 2 (operational change). The experiments consider-
ing this second scenario aim at showing MIPaRT ability to quantify
the impact of operational changes onto performance/reliability ex-
posed by the system in production. We considered two operational
conditions, testing the same version of Train Ticket v2 under low
workload intensity, adopting the two following behaviour mix:

(guest : 0.5; buyer : 0.4; renouncing :0.1; refund_claimer : 0.0) (5)
(guest : 0.3; buyer : 0.4; renouncing : 0.0; refund_claimer : 0.3) (6)

Figure 8 shows the effect of the operational change in terms of
number of requests to request classes. For instance, that the amount

of requests issued to obtain a refund voucher increases after the
change (i.e., behaviour mix in Eq. 6). We also observe that the oc-
currences of the other classes decrease, except for logininyalid,
Payyalid> Pa¥invalids and searchTickety,1ig. Figure 9 shows the
criticality plot for the two testing sessions. The red data points
represent the results obtained with the behaviour mix in Eq. 5 (pre-
change), whereas the blue data points represent the results obtained
with the behaviour mix in Eq. 6 (post-change). The plot highlights

Wz Profile 1
mmm Profile 2

getVoucher_invalid
getVoucher_valid
setNewContact_valid
selectOrder_valid
selectContact_valid
searchTicket_invalid
searchTicket_valid
pay_invalid
pay_valid
login_invalid
login_valid

home_valid

Request partitions

getFoods_valid
getAssuranceTypes_valid
booking_invalid
booking_valid
cancelNoRefund_valid
adminLogin_valid
navigateToclientLogin_valid

createUser_valid

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of requests

Figure 8: Scenario 2 — Request count of input classes.

AST 22, May 17-18, 2022, Pittsburgh, PA, USA

1.00 - -
pay_invalid .
Low

criticality

o ebveoe

075 getVoucher _invalid

Medium
criticality

performance
o
@
g

0.25 High
criticality
createUser valid
0.00
0.00 0.25 0.50 0.75 1.00

reliability

Figure 9: Scenario 2 — Criticality plot showing the effects of
operational changes.

the effects of the operational change on performance and reliabil-
ity associated to input partitions. We can make for instance the
following observations. According to Fig. 8, the voucher is never
requested before the operational change: both performance and reli-
ability issues associated with getVoucher,,1i4 requests occur after
the operational change and they are detected and made visible by
MIPaRT. The reliability issues associated with requests payinvalid
are detected also after the operational change. This is consistent
with Fig. 8 that shows a comparable number of occurrences.

5.4 Discussion of the results

From the application of MIPaRT and its visualization layer (Scenario
1), we can provide the QA team with insights on performance,
reliability, and performance and reliability jointly. Thus, MIPaRT
elevates the attention on those request classes, that developers may
consider more critical according to the analysis performed with
MIPaRT and decide their Dev activities of the future DevOps cycles.
In particular, developers are able to detect issues and then prioritize
activities on those microservices whose requests may not evidently
show issues of performance or reliability only. MIPaRT captures
variation of such issues under operational changes (Scenario 2).
With our platform, developers can also have further insights on
the nature of the issues of between performance and reliability
(Scenario 1, table summary and radar plots) and how such issues
can be affected by a specific operational change (Scenario 2).

Summary RQ1. Does the integrated performance-reliability test-
ing provide advantages compared to the verification of the two quali-
ties in isolation? The integrated testing approach yields additional
insights compared to performing performance or reliability testing
in isolation. The future Dev activities can be prioritized accounting
for both extra-functional qualities. Furthermore, MIPaRT quanti-
fies the joint effect on both performance and reliability caused by
evolutionary/operational changes.

Summary RQ2. Can MIPaRT detect existing relations between
performance and reliability issues? According to our controlled ex-
periments, MIPaRT is able to detect some relations between the
two extra-functional qualities. In particular, by using the radar plot
visualization we have been able to characterize reliability issues
either as fast failures possibly caused by implementation defects or
saturation of resources caused by performance issues.

Camilli, et al.

6 THREATS TO VALIDITY

External validity threats of this work concern the replication of
our experience to other systems or settings. We addressed them
selecting a representative benchmark in Microservices architecture
research and adopting a common technology stack in microservices
systems, as described in [39]. We also built an ex-vivo testing en-
vironment using a modern infrastructure supporting continuous
deployment. As described in [11], this represents a common setting
for DevOps practices.

Threats to internal validity could limit the extent to which the
results obtained in the evaluation support our claims. We mitigated
these threats through a careful design of the two scenarios of in-
terest (i.e., evolutionary and operational changes) as well as the
controlled experiments.

Construct validity threats concern possible misinterpretation of
what our measures reflect of the controlled experiments. We miti-
gated these threats by assessing the metrics used in MIPaRT. Relia-
bility has been measured by using the Nelson-Aalen non-parametric
estimator that represents a de-facto standard in software reliabil-
ity engineering [38]. Performance has been measured based on
well-established practices according to the usability engineering
guideline presented in [28].

Conclusion validity threats concern the possibility of obtaining
results by chance since the testing sessions were guided by stochas-
tic sampling. We addressed them by sampling a large number of
requests. Each test session lasted around 20 minutes, during which
we sampled more than 15k requests.

7 CONCLUSIONS

Performance and reliability are two fundamental quality factors for
microservices systems, typically analyzed separately. In DevOps,
new releases of microservices are very frequent and usage patterns
may change often too. Thus, QA teams would benefit from the avail-
ability of techniques and tools to rapidly and jointly investigate
performance and reliability issues which may arise due to evolu-
tionary and operational changes. To this aim, we have proposed
MIPaRT, a framework for microservices systems ex-vivo testing
for joint analysis of performance and reliability aspects. MIPaRT
builds on techniques for service usage, workload modeling, and for
integrated performance-reliability testing. It provides QA engineers
with a platform to automatically generate test cases, orchestrate
testing sessions, computing relevant metrics and visualize results,
for continuous assessment of microservices systems. This comes
at the cost of the availability of microservices specifications and
of service usage and system monitoring data, which are typically
readily available in RESTful microservice systems development
and operation contexts. We described controlled experiments in
operating MIPaRT with an open microservices systems benchmark,
showing the benefits of our integrated analysis.

ACKNOWLEDGMENTS

Part of this work has been supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie project uDEVOPS, grant agreement No: 871342
(https://cordis.europa.eu/project/id/871342).

https://cordis.europa.eu/project/id/871342

Microservices Integrated Performance and Reliability Testing

REFERENCES

[1] J. Lewis and M. Fowler. Microservices - a definition of this new architectural

term. Available at: http://martinfowler.com/articles/microservices.html, 2014.
URL https://martinfowler.com/articles/microservices.html.

M. Loukides. What is DevOps? O’Reilly Media, Inc., 2012.

L.J. Bass, I. M. Weber, and L. Zhu. DevOps - A Software Architect’s Perspective.
SEI series in software engineering. Addison-Wesley, 2015.

P. Abrahamsson, G. Botterweck, H. Ghanbari, M. G. Jaatun, P. Kettunen, T. J.
Mikkonen, A. Mjeda, J. Miinch, A. N. Duc, B. Russo, and X. Wang. Towards a
secure DevOps approach for cyber-physical systems: An industrial perspective.
International Journal of Systems and Software Security and Protection, 11(2):38-57,
2020.

[5] J. A.Morales, H. Yasar, and A. Volkman. Implementing DevOps practices in highly

regulated environments. In Proceedings of the 19th International Conference on
Agile Software Development: Companion, XP *18. ACM, 2018.

K. C. Bourne. Chapter 7 - change control management. In K. C. Bourne, editor,
Application Administrators Handbook, pages 96-111. Morgan Kaufmann, Boston,
2014.

[7] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation.
(Fowler). Pearson Education, 2010.

A. Avritzer, V. Ferme, A. Janes, B. Russo, H. Schulz, and A. van Hoorn. A quan-
titative approach for the assessment of microservice architecture deployment
alternatives by automated performance testing. In Proceedings of the 12th Euro-
pean Conference on Software Architecture (ECSA), volume 10469 of Lecture Notes
in Computer Science, pages 159-174. Springer, 2018.

A. Avritzer, V. Ferme, A. Janes, B. Russo, A. van Hoorn, H. Schulz, D. Menasché,
and V. Rufino. Scalability assessment of microservice architecture deployment
configurations: A domain-based approach leveraging operational profiles and
load tests. Journal of Systems and Software, 165(110564):1-16, 2020.

R. Pietrantuono, S. Russo, and A. Guerriero. Run-time reliability estimation
of microservice architectures. In 2018 IEEE 29th International Symposium on
Software Reliability Engineering (ISSRE), pages 25-35. IEEE, 2018.

A. Bertolino, G. De Angelis, A. Guerriero, B. Miranda, R. Pietrantuono, and
S. Russo. DevOpRET: Continuous reliability testing in DevOps. Journal of
Software: Evolution and Process, 2020;e2298:1-17, 2020.

A. Bertolino, P. Braione, G. De Angelis, L. Gazzola, F. Kifetew, L. Mariani, M. Orru,
M. Pezz¢, R. Pietrantuono, S. Russo, and P. Tonella. A survey of field-based testing
techniques. ACM Computing Surveys, 54(5):92:1-92:39, 2021.

X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding. Fault analysis and
debugging of microservice systems: Industrial survey, benchmark system, and
empirical study. IEEE Transactions on Software Engineering, 47(2):243-260, 2021.
N. Alshugayran, N. Ali, and R. Evans. A systematic mapping study in microser-
vice architecture. In Proc. IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA 2016), pages 44-51. IEEE, 2016.

Addison-Wesley Signature Series

[15] J. Soldani, D.A. Tamburri, and W.-J. Van Den Heuvel. The pains and gains

of microservices: A systematic grey literature review. Journal of Systems and
Software, 146:215-232, 2018.

E. Casalicchio and V. Perciballi. Auto-scaling of containers: The impact of relative
and absolute metrics. In Proc. FAS*W@SASO/ICCAC, pages 207-214. IEEE, 2017.
Matteo Camilli, Angelo Gargantini, and Patrizia Scandurra. Model-based hy-
pothesis testing of uncertain software systems. Software Testing, Verification and
Reliability, 30(2):e1730, 2020. doi: 10.1002/stvr.1730. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/stvr.1730. e1730 stvr.1730.

Matteo Camilli, Angelo Gargantini, Patrizia Scandurra, and Carlo Bellettini. To-
wards inverse uncertainty quantification in software development (short paper).
In Alessandro Cimatti and Marjan Sirjani, editors, Software Engineering and For-
mal Methods - 15th International Conference, SEFM 2017, Trento, Italy, September 4-
8, 2017, Proceedings, volume 10469 of Lecture Notes in Computer Science, pages 375—
381. Springer, 2017. ISBN 978-3-319-66196-4. doi: 10.1007/978-3-319-66197-1_24.
URL https://doi.org/10.1007/978-3-319-66197-1_24.

T. Ahmad, A. Ashraf, D. Truscan, and I. Porres. Exploratory performance testing
using reinforcement learning. In 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 156—-163. IEEE, 2019.

Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Automating perfor-
mance bottleneck detection using search-based application profiling. In Proceed-
ings of the 2015 International Symposium on Software Testing and Analysis, ISSTA
2015, page 270-281. ACM, 2015.

M. H. Moghadam. Machine learning-assisted performance testing. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019, page
1187-1189. ACM, 2019.

Mark Grechanik, Chen Fu, and Qing Xie. Automatically finding performance
problems with feedback-directed learning software testing. In Proceedings of the
34th International Conference on Software Engineering (ICSE), page 156—166. IEEE,
2012.

[23

[24]

[25

[26]

[28

[29]

(30]

(32]

[33

[34

[35

[36

[37

[38

[39]

[40]

[41

[42

[43]

[44

[45

AST 22, May 17-18, 2022, Pittsburgh, PA, USA

R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A survey of
symbolic execution techniques. ACM Computing Surveys, 51(3):1-39, 2019.

B. Chen, . Liu, and W. Le. Generating performance distributions via probabilistic
symbolic execution. In Proceedings of the 38th International Conference on Software
Engineering (ICSE), page 49-60. ACM, 2016.

A. Sedaghatbaf, M. H. Moghadam, and M. Saadatmand. Automated performance
testing based on active deep learning. In 2021 IEEE/ACM International Conference
on Automation of Software Test (AST), pages 11-19. IEEE, 2021.

J. Koo, C. Saumya, M. Kulkarni, and S. Bagchi. Pyse: Automatic worst-case test
generation by reinforcement learning. In 12th IEEE Conference on Software Testing,
Validation and Verification (ICST), pages 136-147. IEEE, 2019.

L. Gazzola, M. Goldstein, L. Mariani, I. Segall, and L. Ussi. Automatic ex-vivo
regression testing of microservices. In Proceedings of the IEEE/ACM 1Ist Inter-
national Conference on Automation of Software Test, AST 20, page 11-20. ACM,
2020.

J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1994.

M. Andreolini, M. Colajanni, and P. Valente. Design and testing of scalable web-
based systems with performance constraints. In 2005 Workshop on Techniques,
Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-
PERF’05), pages 15-25, 2005.

C.-P. Bezemer, S. Eismann, V. Ferme, J. Grohmann, R. Heinrich, P. Jamshidi,
W. Shang, A. van Hoorn, M. Villavicencio, J. Walter, and F. Willnecker. How
is performance addressed in DevOps? In V. Apte, A. Di Marco, M. Litoiu, and
J. Merseguer, editors, 2019 ACM/SPEC International Conference on Performance
Engineering, ICPE 2019, Mumbai, India, April 7-11, 2019, pages 45-50. ACM, 2019.
A. Avritzer, D. S. Menasché, V. Rufino, B. Russo, A. Janes, V. Ferme, A. van Hoorn,
and H. Schulz. PPTAM: production and performance testing based application
monitoring. In Companion of the 2019 ACM/SPEC International Conference on
Performance Engineering (ICPE), pages 39-40. ACM, 2019.

M. Camilli and B. Russo. Modeling performance of microservices systems with
growth theory. Empirical Software Engineering, 27(39):1-44, 2022.

M. Camilli, C. Colarusso, B. Russo, and E. Zimeo. Domain metric driven decom-
position of data-intensive applications. In 2020 IEEE International Symposium on
Software Reliability Engineering Workshops, ISSRE Workshops, Coimbra, Portugal,
October 12-15, 2020, pages 189-196. IEEE, 2020.

A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski, J. Reynolds, and
C. Rosenthal. Chaos engineering. IEEE Software, 33(3):35-41, 2016.

D. Kesim, A. van Hoorn, S. Frank, and M. Haussler. Identifying and prioritizing
chaos experiments by using established risk analysis techniques. In M. Vieira,
H. Madeira, N. Antunes, and Z. Zheng, editors, 31st [EEE International Symposium
on Software Reliability Engineering (ISSRE), pages 229-240. IEEE, 2020.

V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar. Gremlin:
Systematic resilience testing of microservices. In 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), pages 57-66. IEEE, 2016.
A. Jindal, V. Podolskiy, and M. Gerndt. Performance modeling for cloud microser-
vice applications. In 2019 ACM/SPEC International Conference on Performance
Engineering, ICPE "19, page 25-32. ACM, 2019.

R. Pietrantuono, S. Russo, and A. Guerriero. Testing microservice architectures
for operational reliability. Software Testing, Verification and Reliability, 30(2):
e1725, 2020.

X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao. Benchmarking
microservice systems for software engineering research. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings,
ICSE 2018, pages 323-324. ACM, 2018.

J. R. Norris. Markov chains. Number 2 in Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge university press, 1997.

Matteo Camilli, Andrea Janes, and Barbara Russo. Automated test-based learning
and verification of performance models for microservices systems. Journal of
Systems and Software, 187:111225, 2022. ISSN 0164-1212. doi: https://doi.org/10.
1016/j.jss.2022.111225. URL https://www.sciencedirect.com/science/article/pii/
50164121222000061.

C. Vogele, A. van Hoorn, E. Schulz, W. Hasselbring, and H. Krcmar. WESS-
BAS: Extraction of probabilistic workload specifications for load testing and
performance prediction-a model-driven approach for session-based application
systems. Software & Systems Modeling, 17(2):443-477, 2018.

W. Nelson. Theory and applications of hazard plotting for censored failure data.
Technometrics, 42(1):12-25, 2000.

A. Avritzer, M. Camilli, A. Janes, B. Russo,]. Jahic, A. van Hoorn, R. Britto,

and C. Trubiani. PPTAMA: What, Where, and How of Cross-domain Scalabil-
ity Assessment. In 18th IEEE International Conference on Software Architecture
Companion ICSA-C, pages 62-69. IEEE, 2021.

V. Ferme and C. Pautasso. A declarative approach for performance tests execution
in continuous software development environments. In Proceedings of the 2018
ACM/SPEC International Conference on Performance Engineering, ICPE *18, page
261-272. ACM, 2018.

https://martinfowler.com/articles/microservices.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1730
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1730
https://doi.org/10.1007/978-3-319-66197-1_24
https://www.sciencedirect.com/science/article/pii/S0164121222000061
https://www.sciencedirect.com/science/article/pii/S0164121222000061

	Abstract
	1 Introduction
	2 Related work
	3 Benchmark microservices system
	4 MIPaRT
	4.1 Overview
	4.2 Definition of the operating conditions
	4.3 Ex-vivo testing
	4.4 Performance-reliability analysis
	4.5 Integrated platform

	5 Evaluation
	5.1 Scenarios
	5.2 Experiments
	5.3 Results
	5.4 Discussion of the results

	6 Threats to Validity
	7 Conclusions
	Acknowledgments
	References

